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The equations which hold for the motion of a completely ionized gas. in- 
cluding the equations which connect the current density with the other 
parameters defined bs the problem, may often make use of a two-component 
fluid model, consisting of electrons and ions. In some cases (see, for 
instance, [ 1 1) both components of the mixture and the mixture as a whole 
may be taken as ideal fluids. In other cases [2 3 in the equation of 
motion of the mixture one takes into account the terms connected with 
the viscosity both of the components and of the mixture as a whole. The 
present note considers the question of the calculation of the viscosity 
of the components in the equation used for the current density. This 
equation is usually called the generalized Ohm’s law. Incidentally there 
is also obtained a non-dimensional criterion upon which depends the form 
of the generalized Ohm’s law for a completely ionized gas. 

Let the gas consist of electrons and singly charged ions. For simpli- 
city we will assume that the number of electrons and ions in a unit 
volume is identical and equals n; then under certain conditions I[ 3 1 the 
equations of the motion for each of the components can be written in the 

form 

dt?v, 
men dt = - vpe - div x, - en!E ++Iv,x HI)+R, 

M~TZ ‘2 = -vpi--div ni + en (E + + [vi x H]) + Ri 

iU 

t”f 

Mi are the masses of the electrons and the ions respectively 
we, vi are the macroscopic velocities, p,, pi are partial 

pressures, se, R. are the tensors of the viscous stresses for the 
electrons and ioi gases respectively [3 I, e is the value of the charge 
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of the electron, and E and E are electric and magnetic field vectors. 
Interaction between the components occurs as a result of the collisions 
and is reduced to a certain average force I& (a = e, i), equal to the 
average variation of the momentum in the collision of particles belong- 
ing to each of the different components (R, = - Ri). 

We will consider that the ion and the electron temperatures are the 
same (nsvbx2 *miVis t ’ where Y andv- are the velocity of random 
motion of the electrons and thgfions).'l%om this p, % pi_ 

If we also consider that the velocity of the relative motion of the 
components is small compared to the random velocities, then pi = p, = p/2 
(where p is the pressure of the mixture). ~ltiplying (1) by e/n,, (2) by 
e/ni and adding, we obtain 

Here u is the conductivity of the gas in the absence of a magnetic 

field, j is the current density, andr_ is the time between the collision 
of the electrons and the ions. In the case in which each of the components 
has a Maxwellian distribution of velocity one has 

j = - en (ve - vi) 

R,=- 
nm, (v, - vi) 

z - 
e 

Corrections for this expression, when the distribution is close to 

hkxwelliau, are given in 13 I; but those corrections are, according to 
further evaluations, negligible. 

Furthermore, in order to simplify the formulation we will assume that 
because of the greater mass of the ions the average velocity of the 
mixture coincides with the average velocity of the ion gas (mivi >> a~,). 
For this case one has the relations 

v-vi, 1 ve-v--j 
et4 

Using these relations, and also the equation of continuity 

dn 
dT+ndivv=O 

we transform Equation (3) into the form 
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$+ jdivv+(jv)v--(jo)A=-_+j+ 

+-.e(E + +vxH)--&j xH+$Vpe+ div($n,-sn,! (4) 
/ e e e 1 

We will consider that the characteristic time t for the problem is 
much greater than T and r i the times between the collisions of ions 
with ions (t >> maxe( r =, 7 i) 1. Using this in (4) it is possible to 
neglect the leading term on the left-hand side in comparison with the 
leading term on the right-hand side. 

In the problem in which the electromagnetic field significantly in- 
fluences the motion, the magnetic forces are of the same order as the 
inertia forces. 

nm .V2 c 
pv2- 7 ’ jHL, or j-e (p = n (me + “J = nmJ 

Here V, L are the characteristic velocity and length of the problem. 
If, in addition,viscous forces are essential in the motion, then 

"pV2 or q - nmiVL (q = 0.96nTzJ (6) 

Here T is the temperature, and the value of T] is taken according to 

[3 1. 

For the evaluation of the terms connected with the viscosity in Equa- 
tion (4) it is enough to evaluate one of the components of the tensor 
whose divergence appears in (4), because the remaining components have 
the same order of magnitude [3 1. The component lIzz of this tensor is 
easily transformed into the form 

-$-(div v- di~t)_~2~(~-~_~~+f~)- 

- 2to,teazz 
i 
$j - 

- ; div v - 62’ ($ - g) - 2oiaibe” 

(7) 

‘Ihe coefficients a*‘, as”, b,’ and b,“which appear in this expres- 
sion are functions of OJ e and air i (Oi is the Larmor ion frequency) and 

their order of magnitude does not exceed unity in the range of variation 
of oer c and C+T i. In connection with this 
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because (see, for example, [ 3 1 1 the leading terms in (7) are 

z, <31X r, a i2 
either r 7 t 

e d- 
or ---- “‘, az er< 

Making use of the estimates in (51, (6) and (8) for terms appearing 

in Ecpression (43, we get 

Here Q is the characteristic frequency of the problem and the order 
of magnitude of the ratio ~/~i is given on the basis of (5). 

It is easy to see that the relative value of the terms which appear 
in 14) depends on the value of the non-dimensional parameters G/o+ and 

Ok e’ 

Dapending on these parameters, the generalized C&m’s law will have 
one or the other of the following forms: 
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1. The case Qk.+ << 1, 0~7~ << 1. 

Comparing the terms A, with A, and A, with A, we obtain 

AI 
-b-N- 

.% 

that is, the terms A, and A, can be neglected with respect to A, and A, 
for 5WWi 4 1. fn addition, in order to satisfy the inequality, one has 

A, 3 A,. 

a) For Q/o. -oere we have A, >> A, and A, *A,, Comparing A, with A,, 

by virtue of t 8) we have 

‘%I 
Al I/ 

nq- $2 51 
_- --N_ 

tTLg % @i J 

< 
GS1 (9) 

1 

that is, the terms connected with the viscosity can be neglected. The 
generalized Ohm's law has the form 

j==s(Ei-f]v X B]) fl@ 

'Ihis form of Ohm's law can be used in magnetohydrodynamics. 

b) For Q/ai << acre we have A, << A, and Ohm's law takes the form 

E = -- +<I1 (13) 

This form can be used in maguetohydrodynamics for the study of the 
motion of an infinitely conducting medium. 

c) For mere << Q/'tii << 1 we have A, >> A, and the term A, must be 
compared with A,; we have 

(12) 

that is, the terms connected with viscosity can be neglected and Ohm’s 

law has the form 

j= oE (13) 

This form coincides with Ohm's law for rigid iarnovable conductors. 

2. The case Eli << 1, OcTe * 1. For this, the inequality s2/'oi << wcrc 

holds and it is analogous with case lb. 

3. Jhe case wtii << 1, acre >> 1 is analogous to lb. 

4. The case Q/Ci)i Q 1, OJ, << 1. Here one has the relations A, Q A,, 
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A, >> A,, and also relation (12) holds; therefore this case is 
to lc. 

analogous 

5. lbe case Eli Q 1, aeve - 1. For this case the terms A,, A, and A, 
are of the same order. Comparing A, with A, we arrive at the estimate 
(9), and thus it follows that the terms connected with the viscosity can 
be neglected. Ohm’s law takes on the form 

~~j+~{jxli--eVP~}--~(Er~vxH)=O (14) e e 

'Ihis form of Ohm’s law can be used in the problems of the motion of 
gas with anisotropic conductivity. 

6. The case Eli * 1, 0~1 
A 
>> 1. For this we have inequality (9) hold- 

ing and also the inequality 3 << A,. Ohm’s law has the form 

~jxH--VP.--en~Ei-~vxH)=O (15) 

7. ‘Ihe case Q/oi >> 1, oere << 1. For this case A, >> A,, A, >> A,, 
A, C-C A,, A, >> A,. Comparing A, and A,, we get 

that is, the terms connected with the viscosity can be neglected. 

Comparing A, and A, we obtain 

A2 52 ___ - 
A; oi 1/ 

- 
me 
mi 

It follows that for 1 << Eli G\/ (mi/me) one has A, ,( A, <A, 
Ohm’ s law has the form (13). If ~/~i > ~(l(mi/W,), then A, *A, and 
law has the form 

j=cE+r,(jv)L 
ef8 

and 
Ohm's 

(17) 

8. 'Ihe case ~/~i >> 1, GIJ~ * 1. For this case A, *AA5, A, >> A,, 
A, >> A,, A, >> A,. Gunparing A, with A,, using relation (16) and com- 
paring A, with A,, we obtain 

AZ Q2 m, QQ32.2 t , -5--2 zi2 
A5 0~2 mi 0.Q) 22 2 * e e 

_?<I (18) 

It follows that Ohm's law has the form 
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j+g{jxH--ccpp,)=aE 
e (19) 

9. The case Eli >> 1, Were >> 1. For this case the relations (16) 
and 
form 

(181 hold and also A, << A,, and it follows that Ohm's law has the 

~~xEL-D~,---~~E-o (201 

If 

/El--+/vxH/ 

then, in Ekpations (19) and (201, the terms containing E can be omitted. 

In such a manner, the terms connected with the viscosity can always 
be neglected in obtaining Ohm's laws for a completely ionized gas within 
the two-component model. If relation (6) is invalid, that is, the viscous 
stresses can be neglected in the equations of motion, then all of the 
estimates connected with viscous terms in Ohm's law are strengthened and 
again those terms in Ohm's law can, of course, be neglected. 
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